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ABSTRACT

Contrast sensitivity is a measure of the ability of an observer to detect contrast signals of
particular spatial and temporal frequencies. Here I derive a formal definition of contrast sensitivity
that can be applied to individual linear visual neurons. A neuron is modeled by a contrast transfer
function and its modulus, contrast gain, and by a noise power spectrum. The distributions of neural
responses to signal and blank presentations are derived, and from these, a definition of contrast
sensitivity is obtained. This formal definition may be used to relate the sensitivities of various
populations of neurons, and to relate the sensitivities of neurons to that of the behaving animal.
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INTRODUCTION

One of the fundamental goals of vision science is to relate the performance of the human
observer to the behavior of visual neurons. Performance has many dimensions, but one of great
importance is the capability to signal luminance contrast. Contrast sensitivity marks the border
between blindness and sight, and is the necessary precursor to most other aspects of performance. It is
therefore fitting that contrast sensitivity is a subject of intense psychophysical study. However, it is
much more rarely the subject of electrophysiological experiments. Recordings from single visual neurons
have traditionally examined only contrast gain, a measure of the spikes produced per unit contrast.
Contrast sensitivity, on the other hand, is a measure of the ability to distinguish signal from noise. To
provide a measure of contrast sensitivity, gain must be expressed relative to the noise in the output of
the cell. One purpose of this paper is to provide a more precise formulation of the relationship between
gain, noise, and contrast sensitivity of linear visual neurons.

Barlow and Levick (1969) first addressed the roles of gain and noise in determining sensitivity
of retinal ganglion cells. More recently, a number of studies have directly measured contrast sensitivity
of visual neurons, by estimating the contrast required to produce a response larger than the noise
(Derrington, & Lennie, 1982, 1984; Hawken, & Parker, 1984; Troy, 1983a, b). A second goal of this paper
is to set these experiments, which differed in various details, in a common theoretical context so that
results may be more directly compared. This context also suggests how these experiments might be made
more efficient and complete.

The theoretical context is also designed to allow comparison of contrast sensitivities of neurons
and of observers. This is an essential step towards the goal of explaining the sensitivity of the observer.
Finally, the general theory may be applied to specific models of linear neurons, to examine how their
sensitivity compares to that of actual neurons. In a later paper these ideas will be applied to models of
the linear cortical neuron.

MODEL OF A STOCHASTIC LINEAR NEURON

Here we develop a simple model of a linear neuron whose response is perturbed by noise. The
model has two parts: the deterministic spatiotemporal receptive field, and the output noise.

Spatiotemporal receptive field.

The receptive field l(x,t) describes the response at time t to an impulse of unit time-area-
contrast product, located at x = (x,y). In practice it is measured with pulses of small duration, area, and
contrast, and normalized by the actual product. In this formulation the spatial coordinate system is
relative to the center of the receptive field. The expected response of the cell to an arbitrary signal
f(x,t) is then

r t    =   f x,t   l x,τ-t  dx  dτ
-∞

∞

   . 1

2



A somewhat more convenient representation is the impulse response,

h x,t    =   l -x ,-t  2

which allows us to express the cell response as

r t    =    h x,t    *   f x,t   x = 0,0 3

where * indicates convolution over x,t.

Neural responses in early vision may be either graded potentials or sequences of impulses. For
simplicity, we will regard all responses as continuous functions. In the case of spike trains, the response
is in units of impulses/second, and is to be regarded as a suitably smoothed measure of the instantaneous
rate of discharge. Appendix 1 provides additional detail on the relation between a spike train and its
smoothed counterpart.

The receptive field can also be characterized by the transfer function

H u,w   ↔  h x,t   4

where the arrow indicates the Fourier transform1 and where the variables u and w represent spatial
and temporal frequencies. It is useful to decompose the transfer function into gain and phase functions,

G u,w    =   H u,w 5

P u,w    =   arg H u,w 6

For simplicity, we will occasionally omit the spatial frequency argument u from the contrast gain G.
This is to be understood as the temporal contrast gain at a specific spatial frequency.

1The definitions of the forward and inverse Fourier transforms used here are

F w    =   f t   e-i 2 π w t dt
-∞

∞

 

f t    =   F w   ei 2 π w t dt
-∞

∞

   .

Multidimensional Fourier transforms are separable versions of this one-dimensional transform.
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Noise

We represent the noise of a visual neuron as a stationary stochastic process x(t) with
autocorrelation function n(t), which describes the degree of correlation between noise samples at time
separation t. We assume that the noise is additive. This will certainly not be precisely true for all
sources of noise (e.g. quantal fluctuations), but there is evidence that it is roughly true for the total
output noise of ganglion cells in the presence of modest signals (Enroth-Cugell, Robson, Schweitzer-
Tong, & Watson, 1983; Robson & Troy, 1987). It is a matter worthy of more extensive study.

The Fourier transform of the autocorrelation is the power spectral density (psd) N(w). This
describes the power per unit frequency bandwidth in the noise process. As we shall see, knowledge of
the psd is essential to understanding contrast sensitivity.

MEASUREMENT OF POWER SPECTRAL DENSITY

The variability of visual neural responses has been widely studied (Barlow & Levick, 1969;
Dean, 1981; Frishman & Levine, 1983; Levine & Troy, 1986; MacGregor & Lewis, 1977; Rodieck, 1967;
Tolhurst, Movshon, & Thompson, 1981; Tolhurst, Movshon, & Dean, 1983), but spectral methods have
been applied less frequently (Derrington & Lennie, 1982, 1984; Robson, & Troy, 1987; Troy, 1983a, b) A
typical method (Derrington & Lennie, 1982) of estimating the psd of a cell is to capture a set of K
records, each of duration T seconds, of the maintained discharge. Each record is then multiplied, point
by point, by a cosine function of some frequency, and added up, to compute a cosine coefficient at that
frequency. The same is done for a sine coefficient. These two numbers are squared and added to yield an
estimate of the psd at that frequency. The same result may be obtained by taking the Discrete Fourier
Transform of the record, and extracting the squared magnitude at the desired frequency. The process is
repeated for each of the records, and the average and standard deviation of the resulting psd estimates
are computed.

To derive the statistical distribution of power estimates obtained in this way, we note that sine
and cosine coefficients are each weighted sums of zero-mean, approximately-Gaussian random
variables, and are thus themselves approximately Gaussian and zero mean. Because the phase of the
noise component at each frequency is random, sine and cosine coefficients are independent. Time
stationarity implies that the two coefficients have equal variance σ. In the limit of long measurement
interval T (which is all we consider here), this variance is given by

σ2   =   1
2

  N w0  7
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The power z, computed as the sum of two independent zero mean Gaussians, is therefore equal

to σ2 times a Chi-Square random variable with 2 degrees of freedom, and therefore has mean and
variance

µz     =    σz   =    2 σ2    =    N ( w0 ) 8

Additional details on this derivation are given in Appendix 2.

Amplitude vs Power.

Above we have assumed that the experimenter has used the power z at a frequency as the
basic measure. An alternative empirical measure that is often used is the amplitude, y, equal to the
square root of power. This will have a Rayleigh density (Papoulis, 1965),

fy y    =   y
σ2

   exp -y 2

2σ2
 u y    , 9

where u( ) is the unit step function. This has mean and standard deviation

µy     =    Π
2

σ      =      Π
2

  N w 10

σy    =    2 - Π
2

 σ     =     4 - Π
2

  N w 11

It is interesting that the mean of this distribution does not equal the square root of N, but
rather is biased downwards by the factor 0.886. Thus if the estimate is to be used directly, or averaged
with other like estimates, one should either use the unbiased estimator of power, or correct the
amplitude estimate by the appropriate factor.

Note also that the standard deviation is proportional to the mean,

σy   =   4 - Π
Π

   µy    ≈   0.523  µy 12

The ratios of mean to standard deviation of the amplitude estimates reported by Derrington and Lennie
(1982) and Troy (1983a) are very close to this number, suggesting that our assumptions about the noise
process are reasonable.

An example of a study using an amplitude measure is (Troy, 1983a). The author has kindly
provided his raw distributions of estimates of amplitude at eight frequencies. In Fig. 1 these have been
fit with Rayleigh distributions according to a maximum likelihood criterion. A goodness of fit test
rejects (at the .05 level) the Rayleigh distribution in one out of the eight cases (42 Hz). The Chi-Square
goodness of fit statistic and degrees of freedom are indicated in each panel.
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Figure 1. Distributions of amplitude estimates at eight temporal frequencies, fitted with
Rayleigh densities. The data are from Troy (1983a) ( see Appendix 3).
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From each fit we estimate σ  (indicated by "s=" in each panel) and N(w), via Eq. (7). The psd
estimated in this way is shown in Fig. 2.
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Figure 2. Power spectral density of a cat LGN cell. Points are derived from fitted Rayleigh
densities in Fig. 1.

How long should T be?

In estimating the power spectrum, one must decide on the length of the measurement interval T.
There is a tradeoff between the size of T and the number of estimates we make. For example, suppose we
have a fixed total time available of KT seconds. By setting K=1, we can devote this time to one long
measurement interval. By setting K>1, we can subdivide the interval into several shorter segments.
How should K be set?

First we note that the statistic z, on which we base our estimate of the psd, has a variance
which does not depend on T! This rather remarkable fact leads us to ask where the extra information
derived from extending T is going, if not to reducing the variance? The answer is that it is increasing
the frequency resolution of our estimate of the psd. We return to this observation momentarily.

Since extending T does not reduce the variance, this would seem to recommend partitioning the
interval with K>1. If the resulting K estimates are averaged, the variance of the mean will decline
by K, thus increasing the accuracy of each estimate of the psd.

However, the duration T establishes the frequency resolution of the estimate of the psd as
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1/T. Furthermore, the estimator we employ is only asymptotically unbiased. This may be seen in Eq.
(A8), wherein we assume that the psd is constant over the spectrum of the measurement window. This
spectrum is roughly 2/T wide. Thus the bias will be small provided that the psd does not vary much
over this extent. Therefore as a practical guide, one must choose T based on the desired frequency
resolution, and on prior information about the rate of change over frequency of the psd.

If the interval KT is long enough to allow subdivision and averaging, then there are in fact two
ways to average. One, as we have described, is to subdivide by K and compute the mean. The second is
to set K=1, thus maximizing frequency resolution, and then to average K adjacent estimates in the
frequency domain (Stremler, 1982). The former method assumes that the noise process is stationary over
time, the latter that it is stationary over frequency. Both methods reduce both the variance and the
frequency resolution by K. Finally, the averaging over time or frequency may employ a non-rectangular
window, such as a Gaussian, to provide an estimate that is more localized in both time and frequency.

It is traditional to represent frequency spectra as functions of log frequency. This corresponds to a
frequency resolution that increases in proportion to frequency. If this is desired, the value of K may be
made proportional to frequency. Thus for example a noise record of 1 second might be subdivided by
factors of {1,2,4,8,16,32,64} to give resolutions of {1,2,4,8,16,32,64} Hz at frequencies of {1,2,4,8,16,32,64}
Hz. The same effect may be obtained without subdivision by averaging estimates over a frequency
interval equal to {1,2,4,8,16,32,64} Hz at the corresponding frequencies.

Signal plus Noise

Because we have assumed additive noise, it is clear that the signal will merely alter the
means of the distributions of sine and cosine coefficients. If the input is a spatiotemporal sinusoid with
frequencies u,w and contrast k (a drifting grating with speed w/|u|),

f x,t    =   k  cos 2π u⋅x  + wt  13

then the response of the cell will be

r t    =   a cos 2πw t   +  b sin 2πw t  14

where

a 2  +  b 2   =   k 2  G  2 u,w 15

The new mean for the cosine coefficient will therefore be 
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hc(t)  ∗   r t t = T =   a
T

  cos 2πw0u   rect u/T- 1/2   cos 2πw0 T-u   du
-∞

∞

  

=  a 
T

 cos 2πw0u  2  du
0

T

  

=   a T
2

 16

where hc(t) is the cosine measurement filter defined in Appendix 2.

Thus the power z is now the sum of two Gaussians with mean 
a T

2  
and variance σ2, which is σ2

times a Non-Central Chi-Square with 2 degrees of freedom and non-centrality parameter

τ   =   a T
2σ

2
   +   b T

2σ
2
 

=    T a 2   +   b 2

4 σ2

=   T k 2 G 2 w0

2 N w0

     17

If the amplitude, rather than power, is estimated, then the resulting distribution is a "non-
central Rayleigh" (Papoulis, 1965).

To summarize, the distribution of the power estimate for noise alone is N w0 /2 times a Chi-

Square with 2 degrees of freedom. When a sinusoid is present, the distribution is N w0 /2 times a non-
central Chi-Square with 2 degrees of freedom and a non-centrality parameter that is determined by
gain, by contrast, by duration, and by noise power. Similar expressions, involving Rayleigh
distributions, can be given for amplitude rather than power estimates. 

CONTRAST SENSITIVITY

Contrast sensitivity is a measure of the ability to distinguish signal and noise. Above we have
derived distributions for signal and noise and we are therefore in a position to construct a definition of
contrast sensitivity. However, there is no single number that uniquely describes this ability. In fact, the
most complete description is given by the contrast transfer function and the psd. A particular
experimental procedure or psychophysical task defines just one particular measure of contrast
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sensitivity. Hence there are as many measures as there are tasks and procedures. However, if our model
is an accurate representation of the situation, then many of these measures are derivable from one
another. We shall illustrate this point by constructing two measures, one that is analogous to a "yes/no"
procedure, the other to a "two-alternative forced-choice" procedure.

Yes/no

We first consider an experiment designed to measure contrast sensitivity, then we put this
experiment in a theoretical context. The experiment is adapted from (Derrington & Lennie, 1982). The
essence of the yes/no procedure is to determine the contrast that yields a specified proportion correct
p h  when the signal is present (the hit rate), and a specified proportion incorrect p f  when the signal is
absent (the false alarm rate). A trial is "correct" when the response exceeds some criterion λ.

Within certain limits, the selection of λ is arbitrary (see below). However, a tradition with
some sense is to select a value that yields a small, but measurable false alarm rate, 0.05 for example. To
locate this value of λ, we first collect a number of estimates of power z from the maintained
discharge, as described above. From these, and knowledge of the underlying distribution, we select a
criterion power λ such that the probability of it being exceeded by noise alone is p f  = 0.05.

We next select a spatial and temporal frequency. During the course of repeated presentations
the contrast of the signal is adjusted to find a level that yields 50% of the values of z larger than λ.
The inverse of this contrast is a measure of contrast sensitivity.

In the context of our theory, let the cumulative noise-alone distribution be Fn z  , and let the

signal+noise distribution, expressed as a function of the non-centrality parameter τ, be Fs τ |z . Then
the criterion λ is given by

λ   =   Fn
-1    1 - pf   18

For example, when p f = 0.05, λ = 5.99 as shown in Fig. 3.
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Figure 3. Distributions of power estimates for noise and signal+noise at threshold in the yes/no
procedure. False alarm rate is 0.05, hit rate is 0.5.

The distributions for signal and noise at threshold in the yes/no procedure are illustrated in
Fig. 3. The noise density is Chi-Square with 2 degrees of freedom, and the signal+noise density is Non-
Central Chi-Square with 2 degrees of freedom and non-centrality parameter of 4.96. The criterion at

5.99 is also shown. The horizontal axis is in units of σ2.

The non-centrality parameter τ that yields an estimate greater than the criterion  λ  on p h   of
the signal trials is given by

τ   =   Fs
-1    1 - ph |Fn

-1  1 - pf    19
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Continuing the example pictured in Fig. 3, if p f = 0.05, and p h  = 0.5, then τ = 4.96. Table 1 gives values

of τ for various hit and false alarm rates2.

false alarm 0.05 0.10

hit
0.5 4.957    3.556

0.75 8.591    6.770

Table 1. Values of τ for the yes/no procedure for various hit and false alarm rates.

We now rearrange Eq. (17), to express contrast sensitivity, 1/k, in terms of G and N,

1/k    =    T  G w0

2 τ N w0
    . 20

2A traditional alternative to selecting a criterion based on particular hit and false alarm
rates is to select a criterion that is a certain number of standard deviations above the mean of
the noise-alone samples. This number is then analagous to d', the detectability measure of
signal detection theory (Green, 1966). A common choice is d' = 2. From Eq. (22) above, this gives

λ   =    µz  + d' σz     =    2 σ2 + 2  2 σ2     =    6 σ2   

The distribution of z is σ2 times  χ2
2 , so the false alarm rate is 

pf  =  1 - χ2
2 x  dx

0

6

  =  0.0498
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This result is sufficiently important that we restate it in slightly different terms, expressing
contrast sensitivity explicitly as a function of spatial and temporal frequency, and re-introducing the
spatial frequency variable to the expression for contrast gain.

C u, w    =    T  G u, w
2 τ N w

 21

This expression shows that contrast sensitivity is essentially a signal/noise ratio (G/N),
scaled by constants T and τ that reflect the measurement duration and the criterion performance(Table
1). The dependence upon duration illustrates that contrast sensitivity will increase with time, as we
expect. It also shows that to relate theoretical and empirical measures of contrast sensitivity one must
specify the value of T used.

Forced-Choice.

In a forced-choice procedure, no prior estimate is made of the psd. Each trial consists of two
presentations, one of contrast k and the other of zero contrast. A value of z is computed for each
presentation, and if the larger corresponds to the high contrast presentation, the trial is a "success",
otherwise, a "failure." During repeated trials, the contrast is varied to find the "threshold" contrast
yielding a specified proportion of successes, ps . A number of methods exist for searching efficiently for
the threshold (Cornsweet, 1962 ; Watson, & Pelli, 1983; Wetherill, & Levitt, 1965), or a less efficient

method of constant stimuli may be used (Watson & Fitzhugh, 1989). If we write fs z | τ  for the
density of signal+noise, given non-centrality parameter τ, then the expected proportion correct will be

P τ    =   fs z | τ  Fn z  dz
-∞

∞

22

Then the value of τ corresponding to a particular ps  is simply

τ   =   P -1 ps 23

Once again we can compute values of τ for several interesting values of the proportion correct, as shown
in Table 2. The value of 0.816 is the conventional threshold probability for a Weibull psychometric
function (Weibull, 1951; Watson, 1979).

P(correct) τ

0.75 2.78

0.816 4.00
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Table 2. Values of τ for the forced-choice procedure for various proportions correct.

As in the yes/no method, Eq. (21) states the relationship between τ and contrast sensitivity. This
means that if the theoretical framework is correct, then one can measure contrast sensitivity equally
well by either forced-choice or yes/no methods, and indeed, that one should be able to predict one from
the other.

Amplitude vs Power

As noted above, the basic measure used in these procedures may be  either power or amplitude

(z or z  ). The preceding derivations for yes/no and forced-choice methods used a power measure,
which leads to expressions involving Chi-Square distributions. The derivations may also be done with
amplitude measures, in which case Rayleigh distributions result. However, it is simple to show that
the square root transformation has no effect on the derivations, so that Eq. (21) remains a general
description of contrast sensitivity. The only caution is that that one must determine the value of τ
corresponding to the task in question. For example, Derrington and Lennie (Derrington & Lennie, 1984)
use an amplitude criterion equal to the mean plus two standard deviations. From Eq.s (10) and (11) this
criterion is

λ =   µy   +  2  σy

=    Π
2

    +  2  2 - Π
2

   σc

=   2.5636  σc

24

This criterion, applied to amplitude measures, will be functionally equivalent to its square
applied to a power measure. Thus we observe that the false alarm rate in this situation is

pf  =  1 - Fn λ , or 0.0374. Next Derrington and Lennie found that contrast for which 50% of the

measured amplitudes y were greater than λ . If y > λ , then z > λ.  Thus we can substitute

λ =   2.56362  = 6.5720 into Eq.s (18) and (19) to obtain τ   =   5.541.

This situation is pictured in Fig 4. On the left is the Rayleigh density describing the
distribution of amplitudes for noise alone, on the right is the distribution of amplitudes when contrast

is sufficient to produce 50% amplitudes greater than the criterion λ  .
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Figure 4. Distributions of amplitude for signal and noise at threshold in the yes/no

procedure.

Normalized Contrast Sensitivity.

Note that for a single cell with unchanging behavior, one can obtain many different estimates
of contrast sensitivity, depending on the conditions of measurement and their reflection in the values of
T and τ. To allow comparisons that are unconfounded by these values, it may be useful to consider a
normalized contrast sensitivity,

C * u, w    =    G u, w
2N w

   =   τ /T C u, w   25

As a rule of thumb, when T = 1 second and proportion correct in a 2AFC task is 0.816 (the
conventional threshold for a Weibull function), then normalized contrast sensitivity is just twice
contrast sensitivity.
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Neurometric Functions

The complete description of signal and noise distributions allows the construction of
"neurometric functions" (Tolhurst, et al., 1983) which describe the probability of a criterion response as
a function of contrast. The yes/no neurometric function may be derived from Eq.s (18) and (19). The
forced-choice neurometric function is given by Eq. (22), and an example is shown in Figure 5.
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ct

Figure. 5 Simulated 2AFC neurometric function. Points are values calculated from Eq. (22).
Curve is best fitting Weibull function (β = 2.090)������ � � � � � � � �.

The Weibull function

P k    =   1 - (1-γ) exp - k/α β 26

is a widely used template for both psychometric and neurometric functions  (Nachmias, 1981; Quick,
1974; Tolhurst, et al., 1983; Watson, 1979; Weibull, 1951 ). For comparison, the best-fitting Weibull
function (with γ = 0.5) is also shown. The slope of the Weibull function has been a subject of some study.
For ideal detection in Gaussian noise, it should have a value of about 1.4. Higher values may reflect
uncertainty about the signal (Pelli, 1986). Typical psychophysical estimates are about 3.5. The curve in
Fig. 5 has a slope of β = 2.090.

Unfortunately the only published study of neurometric functions is for cortical cells, and for a
measure consisting of total spikes during an interval, rather than the power of a Fourier component
(Tolhurst, et al., 1983). The slope in this one case was β = 1.29.

Psychophysical Sensitivity
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Consider an observer who must detect a spatiotemporal sinusoid based only on the response of a
single neuron. Theoretically optimal performance, characterized by a so-called "ideal observer",
depends upon the prior knowledge assumed of the observer. If the observer is certain as to the temporal
frequency, but uncertain as to the phase of the signal, then the ideal procedure is to compute the power
(or amplitude) at the signal frequency, as we have done above. Thus if the observer acts as this type of
ideal observer, psychophysical contrast sensitivity will be exactly as described by Eq. (21). This
provides a rigorous means of predicting psychophysical sensitivity from the responses of single neurons.

There are a number of caveats to this direct prediction. First, the observer may be less than
completely uncertain as to phase, particularly for a signal of extended duration, and may thus perform
better than the direct prediction. Second, the observer may be less than completely certain as to
temporal frequency, thus reducing performance. Both of these effects are likely to be modest in size.
Limited vigilance or memory would preclude ideal performance at very long durations.

Of potentially greater consequence is the role of other neurons. Other neurons may help or
hinder, depending upon whether they respond to the signal in question. If the observer attends to
neurons that do not respond, performance will be degraded. For example, if 100 neurons are attended to,
of which only one responds to the signal, sensitivity may be reduced by about 2.8 (Pelli, 1986). But if the
other neurons do respond to the signal, they may improve performance, through either summation of
responses or of probabilities. Probability summation would arise if each neuron individually decided
whether the signal was there, and these decisions were pooled (Green, & Luce, 1975; Robson, &
Graham, 1981; Watson, 1979). If the responses are independent, probability summation would increase

sensitivity by a factor of roughly n1/4, where n is the number of cells. Again if n=100, this factor is
3.16. Signal summation would arise if the responses of the several neurons are linearly combined by a
cell later in the visual pathway. This sort of summation produces large improvements in sensitivity,

essentially proportional to n1/2, which in turn is proportional to the width of the summation area.
The process of signal summation is dealt with at greater length in a forthcoming paper (Watson, 1990).

The two effects likely to produce the largest increments in sensitivity over the direct
prediction, signal summation and probability summation, can occur only if the signal extends over an
area larger than a single receptive field. Thus we should expect the direct prediction to be most
accurate when the signal is of the same size as the receptive field.

DISCUSSION

In the preceding sections we have derived expressions for estimates of the power spectral
density of the response of a linear neuron. For noise alone, these estimates follow a Chi-Square
distribution with 2 degrees of freedom. For signal plus noise, they are non-central Chi-Square with 2
degrees of freedom. Knowledge of these distributions enabled us to then construct an equation formally
relating contrast sensitivity to contrast gain, noise power spectral density, signal duration, and a factor
τ that depends upon the measurement method. Values of τ were provided for several common
methods. We also derive an equation for the "neurometric function" of a cell, describing the probability
of a given percent correct  as a function of contrast. We note that these equations allow direct comparison
of contrast sensitivity of cells and observers, although various caveats must be observed.
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Although contrast sensitivity is a useful and widely used measure of visual performance, it is
not a complete description of the behavior of the cell. First, it confounds gain and noise by taking their
ratio. A more complete description would keep these two functions separate, and we may hope that
future physiological experiments will take this step. Second, the complete contrast transfer function is
composed of both gain and phase, but only the former is retained in measures of contrast sensitivity.
Again, a more complete measurement would be that of the complete transfer function. Some recent
studies have made the necessary phase measurements (Enroth-Cugell, et al., 1983; Hamilton, Albrecht,
& Geisler, 1989), and we may hope this trend continues. When the complete psd and transfer function
are available,predictions of contrast threshold for arbitrary stimuli, and arbitrary response criteria
become possible.

One goal of this work was to provide a formal basis on which to relate the sensitivity of cells
at various levels in the visual pathway. For example, how does the contrast sensitivity of a population
of ganglion cells constrain the contrast sensitivity of geniculate and cortical cells? The equations
derived in this paper provide the basis for answering this question, and these answers are presented in
a forthcoming paper (Watson, 1990).
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APPENDICES

Appendix 1.

The conversion from a spike train to power spectrum may be done in either of two ways. Regard
the train as a sequence of impulses at times tk. This has a transform that is the sum of complex
exponentials

δ t - tk∑
k

   ↔   e -i 2 π wtk∑
k

   . A1

Expanding the exponential into more familiar sine and cosine terms, the power density estimate at a
frequency w can be written

cos 2 π w tk∑
k

2    +   sin 2 π w tk∑
k

2     . A2

The first method is a direct implementation of this expression, wherein sine and cosine functions are
evaluated at the occurrence times of the spikes, accumulated, squared, and added.

The second method is to accumulate spikes within bins of duration D, and to regard this
sequence of counts as a measure of instantaneous rate. This is equivalent to convolving the spike train
with a pulse of duration D and sampling at intervals of D. In the frequency domain, this is equivalent

to multiplying the Fourier transform of the spike train by a sinc function whose first zero is at D -1.
This will produce some attenuation for higher frequencies relative to the first method, but for small D,
the effect will be modest. For example, Derrington and Lennie (1982, 1984) and Troy (1983a,b) used D =

6 msec, so D -1 = 167 Hz. This leads to an attenuation of about 10% at the highest time frequency they

used (42 Hz). Likewise sampling at intervals of D will replicate the spectrum at intervals of D -1, but
with a 6 msec bin effects from this source will be negligible.

Appendix 2.

Measurement of power spectral density is a standard topic in engineering texts (Parzen, 1962;
Stremler, 1982). Here we provide a derivation suited to electrophysiological measurement.

We define a cosine measurement filter with impulse response

hc ( t )  =  1
T

  cos(2 π w0t )  rect(t/T   -  1/2) A3

This is a cosine function multiplied by a rectangular pulse that starts at time 0 and ends at time T. The
pulse represents the measurement interval. We arrange that T is an integer multiple of 1/w0, the

period of the cosine function.
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Let the noise be a stationary process x(t) with psd N(w). Create a new process c(t) by
filtering x(t),

c (t)   =   hc (t)   ∗    x (t) A4

The mean of a linear filtering of a stationary process is the mean of the input times the integral of the
filter impulse response. Since T is an integral number of cycles of the cosine, this integral and hence the
mean of c(t) are zero.

The psd of a filtered process is the psd of the input times the squared gain of the filter, so this
new process will have psd

Nc ( w )   =  N ( w )   Hc ( w )  2 A5

The variance of a zero-mean process is the integral of the psd, so we have

 

σ2  =     Nc ( w ) dw
-∞

∞

  

=  N ( w ) Hc ( w )  2  dw
-∞

∞
 A6

The squared gain of the filter is given by

 Hc ( w )2    =     T
4

     sinc T( w - w0 )   +  sinc T ( w + w0 )    2   . A7

The first zero of the sinc( ) function is a distance 1/T from w0. If T is large, then each lobe of Hc  will

be narrow, and N will be effectively constant over the integral, in which case

σ2  =  N ( w0 )  Hc ( w )  2  dw
-∞

∞

 A8
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From Parseval's Theorem,

σ2  =   N ( w0 )  hc ( t )  2  dt
-∞

∞

  A9

Substituting for hc ( t ) (Eq. A3), and making use of the rect( ) function to set the limits of integration,

σ2  =   N ( w0 )  1
T

  cos ( 2 π w0t )  2  dt
0

T

  A10

For Tw0 integer, this reduces to

σ2   =   1
2

  N w0  A11

We produce a second process, s(t), identical to c(t) except that it uses a sine filter. It will
also have the same mean (zero) and variance as c(t). Because the phase of the component at frequency
w0 is random, c(t) and s(t) are independent.

When we make a measurement, we take samples c and s.from the filtered processes. We now
take the sum of squared sine and cosine coefficients,

z   =   c2  +  s2 A12

Since both c and s are linear combinations of random variables, they are likely to be

approximately Gaussian3, and z will be the sum of two squared zero-mean Gaussians with variance

σ2. which is σ2 times a Chi-Square with 2 degrees of freedom. The mean and standard deviation are
then

µz     =    σz   =    2 σ2    =    N ( w0 ) A13

3If the original process x(t) is Gaussian, then c and s will be exactly Gaussian.
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Appendix 3.

The following are some notes on specific reports that have used a signal/noise method to
estimate contrast sensitivity in visual neurons.

Derrington and Lennie (1982)

This study estimated the psd and spatial and temporal contrast sensitivity of X and Y ganglion
cells in the cat. They used a measuring interval of 3.1 sec, divided into 512 bins, each of 6 ms, to examine
frequencies in octave steps between 0.33 and 42 Hz. They used an amplitude, rather than power
measure, so their psd estimates are biased (Eq. (10)). Estimates are based on 30 replications. In three X
cells and two Y cells they fit a Gaussian to the distribution of 100 amplitudes. The fit failed in two of
five cases. This is perhaps to be expected since from the above analysis this distribution should be
Rayleigh, rather than Gaussian. However, the Rayleigh is not so different from the Gaussian (see Fig.
4) as to reject all five cases. They note that the psd, hence the criterion, hence the contrast sensitivity
depend on T. While they use several values of T in measuring contrast sensitivity, they normalize all
results to a T of 1.5 sec. They also point out that prediction of psychophysical results requires an
assumption about T.

They found that mean of psd is approximately constant at about 4 imp/sec/Hz. The s.d. is also
approximately constant at about 0.57 times the mean. This is close to the predicted value of 0.523 (Eq.
(12)). Psd's for X and Y cells are essentially identical, although mean rate is quite different (51.6
imp/sec for X cells, 30.8 imp/sec for Y cells). Contrast sensitivities were measured using the yes/no
technique, with the criterion set to the mean plus two standard deviations.

Troy (1983a, 1983b)

In these studies of cat LGN cells, complete psds were reported for five X cells and five Y cells.
As in Derrington and Lennie (1982), psds for X and Y cells were almost identical, and the ratio of
standard deviation to mean is about 0.57, close to the predicted value of 0.52 (Eq. (12)). In addition,
distributions of power spectrum amplitudes for eight temporal frequencies in the maintained discharge
were collected (reproduced in Fig. 1 of this paper). Fit of a Gaussian was rejected in all but one case. An
amplitude measure and a yes/no method were used. Other methods are generally as in (Derrington &
Lennie, 1982).

Derrington and Lennie (1984) 

This study examined spatial and temporal contrast sensitivity in macaque geniculate cells.
Complete psds are not reported. Contrast sensitivity was measured by the same method as in Derrington
and Lennie (1982). For most cells criterion was close to 10 imp/sec. Frequencies between 0.16 and 41.8 Hz
were used. The measurement duration T is not stated.

Hawken and Parker (1984)

A yes/no method was used to measure contrast sensitivity of macaque cortical cells. The authors appear
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to have used an amplitude measure, though this is not explicitly stated. The noise-alone psd was
estimated from 16 samples. The oldest sample was replaced after each stimulus trial. The measurement
interval is described as equal to the stimulus duration, but is not otherwise specified. They used a
criterion of mean plus two standard deviations. They examined temporal frequencies from 0.75 to 6.0
Hz. Evidently not all measures were of contrast sensitivity as defined here, since the response measure
was "the component modulated in synchrony with the passage of the bars of the drifting grating or in
terms of the overall elevation of the maintained discharge, as was appropriate for each particular
cell." Analysis of contrast sensitivity of cortical cells must consider output nonlinearities and small or
absent maintained discharges, neither of which I have considered here.

Appendix 4.

To supplement the mathematical content of this paper, this appendix contains Mathematica
expressions for several of the formulae used in the text. Mathematica is a program and language for
manipulating mathematical ideas(Wolfram, 1988). It is available for many computers in wide use. To
conserve space, only definitions and expressions are shown; results of most evaluations, including
graphics, are omitted.
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